
CONTROL-CORE
Release 0.1

CONTROL-CORE

Aug 18, 2023

CONTENTS

1 Contents 3
1.1 Installation . 3
1.2 Usage . 6
1.3 Adding RTC Module to Raspberry Pi . 10
1.4 Concore editor . 12
1.5 The Concore Action . 15
1.6 The Concore Action Dev docs . 18
1.7 Shared Memory communication in Concore . 23
1.8 Concore.hpp . 26

Index 29

i

ii

CONTROL-CORE, Release 0.1

CONTROL-CORE is a framework for Closed-Loop peripheral neuromodulation control systems

Check out the Installation section for further information on installing the CONTROL-CORE framework. Check out
the Usage section for further information on writing concore programs.

Note: This project is under active development.

If you use the CONTROL-CORE framework in your research, please cite the below paper:

• Kathiravelu, P., Arnold, M., Fleischer, J., Yao, Y., Awasthi, S., Goel, A. K., Branen, A., Sarikhani, P., Kumar, G.,
Kothare, M. V., and Mahmoudi, B. CONTROL-CORE: A Framework for Simulation and Design of Closed-
Loop Peripheral Neuromodulation Control Systems. In IEEE Access. March 2022. https://doi.org/10.1109/
ACCESS.2022.3161471

CONTENTS 1

https://doi.org/10.1109/ACCESS.2022.3161471
https://doi.org/10.1109/ACCESS.2022.3161471

CONTROL-CORE, Release 0.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Installation

We have refactored and released the concore protocol as an open-source project.

1.1.1 From the Public Repository

If you are using concore (without committing), the only installation steps required are to clone the concore public
repository and install the concore dependencies as below.

First, clone the concore repository from https://github.com/ControlCore-Project/concore.

$ cd concore

$ pip install -r requirements.txt

If you like to contribute your changes back to concore open-source framework, please fork the repository and send
pull requests. We will review and merge your pull requests.

1.1.2 From the Private Repository

concore is now a public repository, as we refactor and make the code available to public. Therefore, the below
information is mostly becoming obselete.

To check out concore from the private repository, certain steps must be made to checkout the source code, since
GitHub has discontinued password-based cloning.

First, check whether your computer has SSH configured.

$ ls -al ~/.ssh

If you have already configured, you will see files similar to the below.

id_rsa.pub
id_ecdsa.pub
id_ed25519.pub

If not, make sure to configure SSH and create new keys before proceeding to the next step.

If no keys found in the above step, please follw these steps.

3

https://github.com/ControlCore-Project/concore

CONTROL-CORE, Release 0.1

$ ssh-keygen -t ed25519 -C "your_email@example.com"
> Generating public/private algorithm key pair.
> Enter a file in which to save the key (/Users/you/.ssh/id_algorithm): [Press enter]
> Enter passphrase (empty for no passphrase): [Type a passphrase]
> Enter same passphrase again: [Type passphrase again]

You may just click Enter for all of the above. Now you have created the keys, if you did not have already.

Now that you have the keys, start the ssh agent.

$ eval "$(ssh-agent -s)"
> Agent pid 59566

Add your SSH private key to the ssh-agent and store your passphrase in the keychain. If you created your key with a
different name, or if you are adding an existing key that has a different name, replace id_ed25519 in the command with
the name of your private key file.

First finding the name:

$ ls -al ~/.ssh

Then,

$ ssh-add -K ~/.ssh/id_ed25519

Now that you have added your key, you can proceed to the next step of adding the key to your GitHub profile. In the
upper-right corner of any page, click your profile photo, then click Settings.

Open and copy the contents of ~/.ssh/id_ed25519.pub (or a similar .pub file from the .ssh directory).

$ cat ~/.ssh/id_ed25519.pub

In the upper-right corner of any page in GitHub after you have logged, click your profile photo, then click Settings.

4 Chapter 1. Contents

CONTROL-CORE, Release 0.1

In the user settings sidebar, click SSH and GPG keys.

1.1. Installation 5

CONTROL-CORE, Release 0.1

Click New SSH key or Add SSH key.

In the “Title” field, add a descriptive label for the new key. Paste your key (the content of ~/.ssh/id_ed25519.pub or a
similar file that you copied in the previous step) into the “Key” field.

Click Add SSH key. Click Add SSH key. Now, you are ready to checkout the private GitHub repository with the below
commands, as long as you are already added to the respective repository.

$ git clone git@github.com:ControlCore-Project/concore20.git

$ cd concore20

$ pip install -r requirements.txt

1.2 Usage

1.2.1 Introduction

CONTROL-CORE is a framework for peripheral neuromodulation control systems, which consist of models of organs
called physiological models (PMs) and controllers that interact with PMs. The controller and the PM are represented
by workflow diagrams (.graphml) that indicate how they are connected together. Nodes in the workflow diagram
are programs that are written using the concore protocol. Edges in the workflow diagram show how the nodes are
interconnected. To create a system with concore, you need to write at least two programs (or use existing programs)
that are referrenced in the workflow diagram. These programs need to use the concoremethods to receive and transmit
neurostimulation data and response.

To develop workflows in the CONTROL-CORE framework, one must go through two steps. First, to develop the
programs following the concore protocol. Second, is to create a workflow from the created programs.

1.2.2 Writing concore Programs

The concore protocol requires the developer (the application developer who develops programs to run on the
CONTROL-CORE framework) to write a new concore study consisting of two or more interacting programs or split
one into separate and programs.

If you are migrating an existing program into concore, the splitting approach is the one you need to take. If you are
writing programs from scratch, it makes more sense to write programs such as a PM and a controller as independent
programs and construct a concore study from these programs.

6 Chapter 1. Contents

CONTROL-CORE, Release 0.1

Now, let’s look into how to split an existing program to use concore as specified above, with a minimal example.

1.2.3 Adapting your program to use concore protocol

First, let’s consider the below simple program, that does not adhere to the concore protocol, and appears as a “Com-
bined program” with both PM and controller methods in it.

Combined program (non-concore)

The above simple code represents your existing program that does not adhere to concore protocol. That means, it
consists of and methods in a single integrated program.

Now, let’s see how to break this into two different concore programs, each representing and You must have noticed
we have been conistently using colors in our code samples. These colors have a meaning.

Code segments that represent the methods are in .

Code segments that represent the methods are in .

Code segments that are specific to your application, and not specific to your PM or controller are in . These segments
will likely end up in your both concore PM and controller programs as we will see shortly.

Separated into concore programs

Let’s convert the above program to use concore now. concore specific code segments are in black in the two concore
programs (controller and PM) displayed below.

The Controller

The respective concore controller, saved as controller.py:

The PM

The concore PM, saved as pm.py:

1.2. Usage 7

CONTROL-CORE, Release 0.1

The concore Git repository comes with some samples. The above controller.py and pm.py can be found in the demo
directory. The demo directory also comes with other sample controller and pm implementations, and workflows that
connect them - stored as GraphML files.

1.2.4 Building Workflows with concore

CONTROL-CORE leverages DHGWorkflow to create such workflows graphically. DHGWorkflow is a browser-based
lightweight workflow composer, which lets us visually create directed hypergraphs (DHGs) and save them as GraphML
files. concore consists of a parser that interprets the GraphML files created by DHGWorkflow into workflows con-
sisting of concore programs that interact with each other in a DHG.

concore comes with a set of samples in the demo directory. As a learning exercise, these samples do not have the
actual physiological models and controllers. Rather, they demonstrate the concore protocol with minimal complexity.

Let’s run a sample workflow!

First, use your favorite editor to create controller and pm or use the existing controller.py and pm.py in the demo
directory (elaborated in the above section). Similarly, a sample workflow with the above sample controller.py and
pm.py is also saved in the demo directory as sample.graphml in the demo directory. The demo directory also has
several other controller, pm, and workflow sample implementations.

Let’s go to the demo directory to compose and edit the workflows.

$ cd demo

Then, use the editgraph command to pop up the browser that opens DHGWorkflow. Then create a graphml file, similar
to the one demonstrated below, by dragging and dropping nodes and edges. Make sure to label the nodes and edges
correctly, making sure to use the correct case (the programs are case sensitive). The below commands are specific to
POSIX (Linux/MacOS) environments. If you use Windows, please make sure to use \ instead of /.

../editgraph

Use the “Save As” option and type “sample1.” That will save the workflow as sample1.graphml in your Downloads
directory.

Now, use the getgraph command to copy the graphml files from your Downloads directory to the current directory.

../getgraph

This copies “sample1.graphml” to current directory “demo”.

Now, go back to main concore directory to build the study that uses the programs referenced by the workflow.

cd ..

8 Chapter 1. Contents

https://github.com/controlcore-project/DHGWorkflow

CONTROL-CORE, Release 0.1

Run the makestudy command of concore which creates files and folders necessary for the workflow execution.

./makestudy demo/sample1

This would create a “sample1” directory with a first copy of the source files in “src”.

Go to the sample1 directory.

cd sample1

Now, run the build command, which functions like a compiler.

./build

This,

• creates CZ directory corresponding to node and copies controller.py into CZ.

• creates PZ directory corresponding to node and copies pm.py into PZ.

• creates CU and PYM directories corresponding to the edges of the graph.

The below diagram demonstrates the files and folders after running the build command. The dashed arrows indicate
the multiple copies of files that are being used.

Now, set a maxtime attribute to list the number of iterations to be made by the controller and the PM.

./maxtime 30

This copies 30 into edges so both programs finish at the same time

Next, use debug command to execute the workflow.

./debug

1.2. Usage 9

CONTROL-CORE, Release 0.1

The debug windows pop up.

Remember to close the debug windows with mouse, once the results are obtained.

Instead of debug, you may use the run command to execute the workflows without debug windows.

./run

At last, clean up the resources with the below commands.

./stop

Executing a stop command is always needed for docker. But it is optional in this example as we did not use Docker.

./clear

Clearing is also always needed for Docker or if rerunning. Again optional in this example.

Finally, you must destroy the sample1 directory, making sure to stop and clear first in Docker executions before using
the destroy command.

cd ..

./destroy sample1

You may see a few error messages and warnings. They are expected and can be safely ignored.

1.3 Adding RTC Module to Raspberry Pi

The Real-Time Clock (RTC) module is a device that keeps time even when the power is off or the battery is removed.

By default, the Raspberry Pi is intended to be connected to the Internet via Ethernet or Wi-Fi to update the time
automatically from global NTP (Network Time Protocol) servers.

However, an RTC module is necessary for running Concore on a Raspberry Pi without a network connection, ensuring
the preservation of accurate time even during power outages.

1.3.1 Hardware Requirements

1. Raspberry Pi

2. Micro USB power supply

3. SD card with Raspbian OS installed

4. USB keyboard and mouse

5. HDMI-capable monitor

6. Real-Time Clock module for Raspberry Pi (e.g., DS3231)

10 Chapter 1. Contents

CONTROL-CORE, Release 0.1

1.3.2 Connections

Connect the RTC module(DS3231) to the Raspberry Pi’s GPIO pins as follows:

• RTC module to Raspberry Pi GPIO Pins:

– VCC ———–> Pin No. 1 (3.3V)

– Data ———–> Pin No. 3 (GPIO2)

– Clock ———–> Pin No. 5 (GPIO3)

– NC ———–> Pin No. 7 (GPIO4)

– GND ———–> Pin No. 9 (GND)

• Additionally:

– Connect a USB keyboard and mouse to the Raspberry Pi.

– Connect a monitor to the Raspberry Pi’s HDMI port.

– Connect the power supply.

1.3.3 Setting Up and Testing I2C

Before using the RTC module, you need to set up the I2C interface on your Raspberry Pi:

1. Option A: Run the following command in the terminal::

sudo raspi-config

Select “Advanced” and then enable I2C.

2. Option B: Select “Menu” > “Preferences” > “Raspberry Pi Configuration” > “Interfaces” > “Enabled I2C”.

After configuring I2C, reboot the Raspberry Pi. To verify that I2C is working correctly, run the following commands
in the terminal::

sudo apt-get install python-smbus i2c-tools
sudo i2cdetect -y 1

You should observe the address of the RTC module (e.g., 0x68) being displayed, indicating that the I2C configuration
is functioning properly.

1.3.4 Setting RTC Time on Raspbian Jessie

• Run the following command in the terminal::

sudo nano /boot/config.txt

Add the line “dtoverlay=i2c-rtc,ds3231” at the end of the file.

• Reboot RaspberryPi

• Run the following command in the terminal::

sudo i2cdectect -y 1

The output should display “UU” instead of the RTC module’s address (e.g., 0x68), indicating that the kernel
driver is working.

1.3. Adding RTC Module to Raspberry Pi 11

CONTROL-CORE, Release 0.1

• Disable the “fake hwclock” to prevent interference with the RTC::

sudo apt-get -y remove fake-hwclock
sudo update-rc.d -f fake-hwclock remove

• Disable the “fake hwclock” to prevent interference with the RTC::

sudo hwclock -D -r

Note that the RTC module may initially have the wrong time and needs to be set once.

• Connect the Raspberry Pi to Ethernet or Wi-Fi to allow it to sync the correct time from the Internet.

• Run:

to write the time
sudo hwclock -w

to read the time
sudo hwclock -r

Ensure that the RTC module remains connected so that the time is saved. From now on, the Raspberry Pi will auto-
matically sync the time from the RTC module at boot, even without an Internet connection.

1.4 Concore editor

1.4.1 Introduction

Concore Editor is a fork of DHGWorkflow, visual Directed Hypergraph Workflow Composer, finetuned to operate as
a frontend for concore.

Key Features of the concore Editor:

Export-import graph as a graphml file. Export graph as JPEG/PNG Undo-Redo Actions Drag Drop Nodes Create
Edges easily Bend Edges and many more!

1.4.2 How to use?

• Open concore editor by clicking on https://controlcore-project.github.io/concore-editor/ .

• Click on Upload Directory button and upload the directory containing .graphml files.

12 Chapter 1. Contents

https://controlcore-project.github.io/concore-editor/

CONTROL-CORE, Release 0.1

• Now, click on the directory which was uploaded and then click on the .graphml to open it in workspace.

• Edit the .graphml as wanted and save it.

• To build the .graphml file, concore fri(server) needs to be switched on. To do so:

First, clone the concore repository from https://github.com/ControlCore-Project/concore.

$ cd concore

$ pip install -r requirements.txt

$ cd fri

$ cd server

$ python main.py

1.4. Concore editor 13

https://github.com/ControlCore-Project/concore

CONTROL-CORE, Release 0.1

It will start the Flask server.

• After switching on the server, click on the server button in concore editor’s tab bar. You will see all the
concore functions appearing there.

• There is an options button which can be seen. It provides the flexibility to take input from user about how a
particular study should be build.

– Checkmark docker checkbox if study to be build as docker image.

– Checkmark octave checkbox if uploaded graphml contains matplotlib extension and has to be build via
octave.

– Enter the time for which you want the study to debug in maxtime field.

– Enter customize parameters in params if there are any.

NOTE: The options can be changed only before executing build or clear.

• Last step is to perform concore functions on opened .graphml in order given in below flowchart.

14 Chapter 1. Contents

CONTROL-CORE, Release 0.1

Note: Executing concore functions in different order can result in errors and breakages.

1.5 The Concore Action

1.5.1 Introduction

This feature makes it easy for users to share their studies, examples, and program files. With this feature, you can
contribute your study without having to use GitHub.

1.5.2 How to use?

1.5.3 1. Creating a new Study

Using concore editor:

• Open concore editor by clicking on https://controlcore-project.github.io/concore-editor/

• Click on Contribute button at top-right of the editor

• To contribute examples, concore fri(server) needs to be switched on. To do so refer https://control-core.
readthedocs.io/en/latest/concoreeditor.html#how-to-use

• Fill in the details as follow:-

These are the necessary arguments

1.5. The Concore Action 15

https://controlcore-project.github.io/concore-editor/
https://control-core.readthedocs.io/en/latest/concoreeditor.html#how-to-use
https://control-core.readthedocs.io/en/latest/concoreeditor.html#how-to-use

CONTROL-CORE, Release 0.1

– Study Name - title of the study

– Study Path - full directory path where the study is located as shown below.

– Author Name - name of the person who created that study

You can also provide the optional arguments by clicking Show Advance Options button

– Branch Name - the branch name you want

– Title of Study - a short title which will displayed as title of pull request at github

– Description of Study - a description which will be displayed as body of the pull request at github

Note: If you are not familiar with Github, we recommend you to skip the optional fields

Tip: To copy the file path , follow this right-click on the file > click on copy path

• Click on Generate PR button and wait until it processes your request

• After it gets completed, you can check at the link given in the message

16 Chapter 1. Contents

CONTROL-CORE, Release 0.1

1.5.4 Using command-line tools:

• pass the above mentioned arguments to the contribute command

./contribute <Study-Name> <Full-Path-To-Study> <Author-Name> <Branch-Name> <PR-Title>
<PR-Body>

• e.g:

./contribute heart F:\example parteek heart-study "Added heart study"

It will create a Pull request authored by parteek, on a new branch named heart-study with title “Added heart study”

1.5.5 2. Updating existing Study

• Make the changes in your local study

• Again create the PR either using concore-editor or CLI. Make sure the values for Author name, Study Name and
Branch name (if entered before) should be the same as you entered before while contributing study

1.5. The Concore Action 17

CONTROL-CORE, Release 0.1

Note: Successful submission doesnot mean that your study is added to our repository, It
will take time for us to review and accept the study.So, you can mention your email in
the description field mentioned above so that if your study got accepted then we will let
you know.

1.6 The Concore Action Dev docs

1.6.1 Introduction

The current implementation uses Github REST API to push code to github by authenticating with github fine grained
access token (refer https://github.blog/2022-10-18-introducing-fine-grained-personal-access-tokens-for-github/)

1.6.2 How it works

• On triggering contribute action in fri server, it executes the contribute.py script

• Let’s assume the paramters provided are:

– Study Name - test study

– Study Path - F:\example

– Author Name - test user

• It will create a new branch named AuthorName_StudyName i.e test_user_test_study in the bot reposi-
tory concore-bot/concore-studies which references the default branch in ControlCore-Project/
concore-studies

18 Chapter 1. Contents

https://github.blog/2022-10-18-introducing-fine-grained-personal-access-tokens-for-github/

CONTROL-CORE, Release 0.1

• Now creating Github blob (refer https://docs.github.com/en/rest/git/blobs) for each file in the directory here
F:\\example. After creating blobs , create a new Git tree (refer https://docs.github.com/en/rest/git/trees)

• After creating Github tree, change the refrence of the newly created branch to the that tree

• Now the changes have been pushed to github, and for creating pull request the pull_request.yml workflow is
runned which creates pull request to upstream repo using persoanl access token of upstream repo

Note: You need to store the personal access token of upstream repo as github secret in
bot repo

1.6. The Concore Action Dev docs 19

https://docs.github.com/en/rest/git/blobs
https://docs.github.com/en/rest/git/trees

CONTROL-CORE, Release 0.1

1.6.3 Creating token for bot

This token is used to create branches and push studies to bot repo.After pushing studies to bot repo it dispatch
pull_request.yml workflow.

• Open the ControlCore-Project account at github and navigate as follow:

settings > Developer settings > Personal access token > Fine-grained access token > Generate New token

Or

click https://github.com/settings/personal-access-tokens/new

• Fill token name,description expiration time

• Under the Repository access section select Only select repositories to select the repository for which
you want to provide the access

• Under the Permissions , provide the read-write permissions for Contents and Actions in the Repository
permission

• Click Generate token button

• Then copy the generated token and hash it using this website in base64 encoding http://www.unit-conversion.
info/texttools/base64/ . Note this hashing is important as Github automatically revoke any token present in the
code.

• Place the token in contribute.py script at https://github.com/ControlCore-Project/concore/blob/dev/
contribute.py#L7

Note: This token has max life time of 1 year and needs to be updated after this duration

1.6.4 Creating token for workflow

This token is used to create pull request to upstream repo using bot account as author of pull request.

• Open concore-bot account at Github

• Create a Personal access token of bot account at https://github.com/settings/tokens/new

• Fill the details as shown below:

20 Chapter 1. Contents

https://github.com/settings/personal-access-tokens/new
http://www.unit-conversion.info/texttools/base64/
http://www.unit-conversion.info/texttools/base64/
https://github.com/ControlCore-Project/concore/blob/dev/contribute.py#L7
https://github.com/ControlCore-Project/concore/blob/dev/contribute.py#L7
https://github.com/settings/tokens/new

CONTROL-CORE, Release 0.1

• Click Generate token at bottom of the page , then Copy the token

• Add this token as Github secret in bot repo at https://github.com/concore-bot/concore-studies/settings/secrets/
actions/new with name token

1.6. The Concore Action Dev docs 21

https://github.com/concore-bot/concore-studies/settings/secrets/actions/new
https://github.com/concore-bot/concore-studies/settings/secrets/actions/new

CONTROL-CORE, Release 0.1

• Click Add secret

Note: This token can have unlimited life span so it is just one-time setup

1.6.5 Architecture

• When contribute action is triggered it pushes local study to concore-bot/concore-studies repository

• After pushing study to Github , it creates a pull reuqest for that study to the ControlCore-Porject/
concore-studies repository

• Unitl the Pull reuqest is merged or closed this branch serves as staging area

Optional:- If you want to explore why we came up with this approach , please refer
https://docs.google.com/document/d/1DdmPO51qOb9OQoiQ4RMH-3O80gxrGWJuHc9QV_AlW0U/edit?
usp=sharing

22 Chapter 1. Contents

CONTROL-CORE, Release 0.1

1.7 Shared Memory communication in Concore

Shared memory is a form of inter-process communication (IPC) in computer systems where multiple processes can
access and exchange data directly from a common memory space. It allows processes to communicate and share
information efficiently without the need for intermediate data storage like files.

1.7.1 Advantages of Shared Memory over File Sharing

• Speed: Shared memory is typically faster than file sharing because data is directly accessible in memory, elimi-
nating the overhead of reading and writing to files. In file sharing, data needs to be written to disk, and the file
system overhead can slow down data access.

• Efficiency: Since there is no need to read or write data to and from disk, shared memory reduces the CPU and
I/O overhead, resulting in more efficient data exchange between processes.

• Simplicity: Shared memory is straightforward to implement and use compared to file sharing, where you need
to handle file open/close, read/write operations, and ensure proper data integrity.

• Scalability: Shared memory can be more scalable in certain situations as it reduces the need for the operating
system to manage file I/O, especially when dealing with a large number of processes accessing the same data
frequently.

• Reduced Disk Space Usage: In file sharing, temporary files might need to be created, and they consume disk
space. Shared memory doesn’t require creating any extra files, reducing disk space usage.

1.7.2 Usage or Activate Shared Memory in Concore

• Need to pass information in the edge in graphml.

• To achieve this, ensure that each edge starts with a positive number greater than 0.

• By following these guidelines, Concore will automatically facilitate data exchange between the relevant compo-
nents using shared memory.

• Additionally, remember not to repeat the same positive number as a prefix for different edge names.

1.7.3 Cases

• Case 1:- PZ writes in Shared Memory (key = 1) and reads from file. CZ writes in file and read from same Shared
Memory.

1.7. Shared Memory communication in Concore 23

CONTROL-CORE, Release 0.1

• Case 2:- PZ writes in Shared Memory (key = 1) and reads from Shared Memory (key = 2). CZ writes in Shared
Memory (key = 2) and read from Shared Memory (key = 1).

• Case 3:- CZ and PZ use file method for communication.

24 Chapter 1. Contents

CONTROL-CORE, Release 0.1

• Case 4:- Not a valid case.

1.7. Shared Memory communication in Concore 25

CONTROL-CORE, Release 0.1

1.8 Concore.hpp

class Concore
Class representing the Concore implementation in C++.

Public Functions

inline Concore()
Constructor for Concore class. Initializes the iport and oport maps by parsing the respective files. It also
creates or attaches to the shared memory segment if required.

inline ~Concore()
Destructor for Concore class. Detaches and removes the shared memory segment if shared memory created.

inline key_t ExtractNumeric(const std::string &str)
Extracts the numeric part from a string.

Parameters
str – The input string.

Returns
The numeric part of the string. Returns -1 if the string does not contain a numeric part.

inline void createSharedMemory(key_t key)
Creates a shared memory segment with the given key.

Parameters
key – The key for the shared memory segment.

inline void getSharedMemory(key_t key)
Retrieves an existing shared memory segment with the given key. Waits until the shared memory segment
is created by the writer process.

Parameters
key – The key for the shared memory segment.

inline map<string, int> mapParser(string filename)
Parses a file containing port and number mappings and returns a map of the values.

Parameters
filename – The name of the file to parse.

Returns
A map of port names and their corresponding numbers.

inline bool unchanged()
function to compare and determine whether file content has been changed.

Returns
true if the content has not changed, false otherwise.

inline vector<double> parser(string f)
Parses a string and extracts a vector of double values.

Parameters
f – The input string to parse.

26 Chapter 1. Contents

CONTROL-CORE, Release 0.1

Returns
A vector of double values extracted from the input string.

inline vector<double> read(int port, string name, string initstr)
deviate the read to either the SM (Shared Memory) or FM (File Method) communication protocol based
on iport and oport.

Parameters

• port – The port number.

• name – The name of the file.

• initstr – The initial string

Returns

inline vector<double> read_FM(int port, string name, string initstr)
Reads data from a specified port and name using the FM (File Method) communication protocol.

Parameters

• port – The port number.

• name – The name of the file.

• initstr – The initial string.

Returns
a string of file content

inline vector<double> read_SM(int port, string name, string initstr)
Reads data from the shared memory segment based on the specified port and name.

Parameters

• port – The port number.

• name – The name of the file.

• initstr – The initial string to use if the shared memory is not found.

Returns
string of file content

inline void write(int port, string name, vector<double> val, int delta = 0)
deviate the write to either the SM (Shared Memory) or FM (File Method) communication protocol based
on iport and oport.

Parameters

• port – The port number.

• name – The name of the file.

• val – The vector of double values to write.

• delta – The delta value (default: 0).

inline void write(int port, string name, string val, int delta = 0)
deviate the write to either the SM (Shared Memory) or FM (File Method) communication protocol based
on iport and oport.

Parameters

• port – The port number.

1.8. Concore.hpp 27

CONTROL-CORE, Release 0.1

• name – The name of the file.

• val – The string to write.

• delta – The delta value (default: 0).

inline void write_FM(int port, string name, vector<double> val, int delta = 0)
write method, accepts a vector double and writes it to the file

Parameters

• port – The port number.

• name – The name of the file.

• val – The string to write.

• delta – The delta value (default: 0).

inline void write_FM(int port, string name, string val, int delta = 0)
write method, accepts a string and writes it to the file

Parameters

• port – The port number.

• name – The name of the file.

• val – The string to write.

• delta – The delta value (default: 0).

inline void write_SM(int port, string name, vector<double> val, int delta = 0)
Writes a vector of double values to the shared memory segment based on the specified port and name.

Parameters

• port – The port number.

• name – The name of the file.

• val – The vector of double values to write.

• delta – The delta value (default: 0).

inline void write_SM(int port, string name, string val, int delta = 0)
Writes a string to the shared memory segment based on the specified port and name.

Parameters

• port – The port number.

• name – The name of the file.

• val – The string to write.

• delta – The delta value (default: 0).

inline vector<double> initval(string f)
Initializes the system with the given input values.

Parameters
f – The input string containing the values.

Returns
A vector of double values representing the initialized system state.

28 Chapter 1. Contents

INDEX

C
Concore (C++ class), 26
Concore::~Concore (C++ function), 26
Concore::Concore (C++ function), 26
Concore::createSharedMemory (C++ function), 26
Concore::ExtractNumeric (C++ function), 26
Concore::getSharedMemory (C++ function), 26
Concore::initval (C++ function), 28
Concore::mapParser (C++ function), 26
Concore::parser (C++ function), 26
Concore::read (C++ function), 27
Concore::read_FM (C++ function), 27
Concore::read_SM (C++ function), 27
Concore::unchanged (C++ function), 26
Concore::write (C++ function), 27
Concore::write_FM (C++ function), 28
Concore::write_SM (C++ function), 28

29

	Contents
	Installation
	From the Public Repository
	From the Private Repository

	Usage
	Introduction
	Writing concore Programs
	Adapting your program to use concore protocol
	Combined program (non-concore)
	Separated into concore programs

	Building Workflows with concore

	Adding RTC Module to Raspberry Pi
	Hardware Requirements
	Connections
	Setting Up and Testing I2C
	Setting RTC Time on Raspbian Jessie

	Concore editor
	Introduction
	How to use?

	The Concore Action
	Introduction
	How to use?
	1. Creating a new Study
	Using command-line tools:
	2. Updating existing Study

	The Concore Action Dev docs
	Introduction
	How it works
	Creating token for bot
	Creating token for workflow
	Architecture

	Shared Memory communication in Concore
	Advantages of Shared Memory over File Sharing
	Usage or Activate Shared Memory in Concore
	Cases

	Concore.hpp

	Index

